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Abstract

A nonlinear interactive system comprising of equipment, nonlinear isolator and travelling flexible ship
excited by waves is studied from a vibratory power flow viewpoint to examine its dynamical behaviour and
power flow characteristics. The mathematical model describing the dynamics of this nonlinear interactive
system is developed. Dynamical interactions between equipment, nonlinear isolator, flexible foundation
and water waves are addressed. The nonlinearities of the isolator are characterized by a general pth power
model for damping and qth power for stiffness. A harmonic balance method is adopted to derive the
steady-state harmonic response of the nonlinear system. A Newton–Raphson iteration process in
association with an efficient numerical algorithm is used to obtain the solutions of this nonlinear problem.
Through simulations the dynamical behaviour, power flow characteristics and isolation efficiency of this
complex nonlinear interaction system are investigated. For different values of power p and q, different wave
excitations and flexible or rigid ship, the power transmitted to the equipment and power flow transmission
ratios are calculated and analysed. The effect of the vibration source with different wave conditions of the
seaway is studied through examining its vibratory power input to the overall system. The effects of the
assumptions of flexible or rigid ship, the nonlinearities on the power flows in the system are examined.
Nonlinear power flow phenomena and mechanisms are revealed, which provides an insight to the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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understanding of power flow characteristics in nonlinear systems. Practical guidelines for the design of
vibration isolation systems applicable to maritime engineering are suggested.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Ships experience extreme motions when travelling in rough seas. These excite large forces on the
hull and accelerations on equipment mounted in the vessels, and hence can significantly affect the
operation quality and durability of the equipment and decrease overall safety. Therefore, it is
important to protect equipment mounted on a ship operating in hostile environments. Vibration
protection of sensitive equipment often relies on resilient mounts. Vibration isolators are used to
reduce vibrations transmitted from a base to equipment (e.g. machinery, etc.) and they usually
consist of passive and dissipative elements mounted between the equipment and foundation. The
classical theory of vibration isolation [1–4] assumes the whole system is linear, the equipment and
its supporting base are rigid and assumes a single degree-of-freedom (dof) system to model the
isolator neglecting the dynamical interactions between the equipment, isolators and/or supporting
structure. Based on this relatively simple model, a low suspension frequency o0 and lightly
damped vibration isolator should provide efficient attenuation of harmonic vibration over a wide
range of frequencies o4

ffiffiffi
2

p
o0: This type of model was studied by Tao et al. [5] in a problem

relating to marine engineering, in which the isolation system was assumed linear and the marine
engine was idealized as a rigid body with 6 dof supported by four isolators fixed to a rigid floor,
but the investigation neglected any fluid–structure interactions from the seaway.
In reality, however, dynamical systems are inherently nonlinear and significant nonlinear

behaviour has been observed in many vibration applications. For example, hydraulic engine
mounts used in vehicles exhibit nonlinear stiffness and damping and their behaviour is sensitively
dependent on excitation frequency and vibration amplitude [6,7]. Orifice type dampers produce
nonlinear damping [8] and vibration isolators consisting of polymeric materials display nonlinear
characteristics in both stiffness and damping [9]. In these isolation systems, the transmission path
between source and receiver contains significant localized nonlinear elements. To design a
practical isolation system with nonlinear elements, the current linear model cannot provide
satisfactory performance. Moreover, the equipment and supporting structures are not rigid but in
reality flexible and there exist dynamical interactions between the exciting source and receiving
structures, which may lead to limitations in control capabilities. Such explanations provide
reasons why unsatisfactory performance of vibration isolators can sometimes be observed in
engineering applications. Therefore, to improve classical isolation design and to obtain better
isolation performance, two areas of investigation are required. One is the linear dynamic
characteristic of the source, receiver, isolators and their interactions, and the other is nonlinearity.
The investigation of the effect of flexible equipment or supporting structure on isolation system

design using a linear model usually involves the examination of isolation performance in terms of
force or motion transmissibility [10–13]. Based on these fundamental studies, it was shown [14–20]
that compliant equipment, wave effects experienced by the isolator and the dynamical behaviour
of the supporting structure can significantly affect the system’s performance and the mobility of
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the base structure plays an important role in the overall behaviour of the isolation system. A
recent investigation [21] of the dynamics and control of the human body—passive/active seat
suspension—vessel—wave system has revealed that the interactive effect between the elastic vessel
and a human body-seat suspension system is significant. Hence, the dynamical behaviour of the
ship should be considered in a conventional seat design for lightly damped high-speed vessels.
Recently, investigators [5–8,22–24] have re-examined the classical linear theory of vibration

isolation and shown that inclusion of nonlinearity present in practical isolators becomes very
important. In 1995, Kim and Singh [7] studied nonlinear dynamic characteristics of a hydraulic
engine mount both at the device level and within the context of a simplified 2 dof vehicle model
constructed by a nonlinear mount and a linear suspension system. The effects of nonlinear orifice
type damping on the response of 1 and 2 dof systems were reported by Popov and Sankar [8].
Ravindra and Mallik [22] investigated the dependence of transmissibility performance on the
nonlinear parameters of isolators in a 1 dof configuration. The performance of nonlinear
isolators, subject to shock excitations, with four different damping characteristics was examined
by Shekhar et al. [23]. Natsiavas and Tratskas [24] investigated a 2 dof system consisting of a rigid
body on two identical isolators characterized by linear viscous damping and Duffing-type
stiffness. In these studies, although the nonlinearity existing in local components was considered,
however, the dynamical coupling effects of source and/or receiving structure were neglected due to
the assumption of rigidity for equipment and supporting structures.
Vibratory power flow provides a performance descriptor accounting for both force and motion

characteristics [14,15], which can describe more accurately the dynamical behaviour of vibration
systems. In recent years, a power flow analysis (PFA) method has been successfully developed to
model linear complex structures/structural-acoustic and vibration control systems [14–20,25–31].
Many investigators have developed various methods [14–20] to predict power flow transmissions
in linear dynamical systems. The power flow parameter is also chosen as a cost function to
evaluate the performance of optimal vibration control [25–31]. It is surprising that investigations
into power flow analysis of nonlinear systems are very limited although Royston and Singh [32,33]
studied nonlinear vibration isolation systems using a vibratory power transmission approach.
To address the described problems, Xiong et al. [34] studied a nonlinear isolation system

comprising of a nonlinear damper and spring supporting equipment in a floating flexible ship
using a power flow approach. An integrated mathematical model was developed to include
nonlinearity effects and interactions between equipment, isolator and flexible structure. However,
to simplify the problem, the ship was assumed stationary and therefore wave effects were
neglected. That is, the coupling effects between waves and the dynamical behaviour of the ship on
power transmission characteristics were not addressed. In numerical simulations, only nonlinear
characteristics of typical quadratic damping and/or stiffness were examined.
In contrast to normal vibration isolation systems usually involving large solid foundation

structures fixed to the earth, the isolation systems used in ships travelling in a seaway must handle
distinct features such as wave–structure interactions. For example, a ship is a large elastic
structure travelling in a seaway experiencing wave loads of differing frequency content. These
wave loads are distributed dynamic forces acting on the wetted surface of the ship and therefore
there exists a strong coupling with the displacement of the flexible structure. The generalized
forces exciting the motions of equipment are strongly dependent on both wave parameters and
structural dynamic behaviour. Furthermore, the whole floating system may experience a large
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motion and/or large impact forces produced by slams or impacts whilst travelling in rough seas.
As a result of these, the isolation system may often experience a large transient displacement, and
therefore the nonlinearity in springs and dampers in the suspension system used in floating
structures cannot be ignored. Due to these aspects of marine engineering, it is a challenging
problem to investigate an integrated dynamical system including the interactive behaviour of the
whole coupling system as well as the nonlinear characteristics of isolators used in high-speed
vessels travelling in seaways.
In this paper, a mathematical model and power flow analysis theory [34] are further developed

to describe the dynamical behaviour of a coupled system involving nonlinear isolation systems
supporting equipment in a flexible ship travelling at a constant speed in a seaway. The ship is
excited by distributed dynamic loadings produced by sinusoidal sea waves of unit wave amplitude
and a selection of wavelengths l ¼ 0:105L; 0.349L, 2L, L, L/2, L/4. The nonlinear dynamical
characteristics of the isolator are described by a general nonlinear model consisting of a pth power
damper and a qth power stiffness. Not only are both stiffness and damping nonlinearities
considered, but also the beamlike ship is treated as flexible and the vibration source effect due to
the coupling of the sinusoidal waves and hull included. That is, the hull is subject to fluid actions
involving inertial, damping and buoyancy forces. The equations of motion describing the
dynamical behaviour of the nonlinear interacting system are derived and a harmonic balance
approach [35], in association with a Newton–Raphson iteration process [36], is adopted to derive
the steady-state harmonic responses of the system.
To characterize and analyse the influence of nonlinear effects, nonlinear systems with several

combinations of different damping and stiffness powers p and q are examined. Each nonlinear
system is analysed using a power flow approach and calculations include instantaneous and time-
averaged nonlinear power flow spectra. The influence of flexible or rigid ship, the effects of the
nonlinearities in damping and/or in stiffness, and the impact of different wave excitations on
power flow characteristics are studied. The results of these nonlinear systems are compared with
the linear case, i.e., p ¼ 1 and q ¼ 1 to illustrate power flow behaviour in the chosen nonlinear
system.
2. Mathematical modelling

Fig. 1 illustrates schematically a dynamical interaction system comprising equipment (e.g.
machinery), a nonlinear isolator and a flexible ship hull excited by waves. During operation, it is
assumed that the high-speed vessel experiences severe hydrodynamic loading due to waves,
slamming and wave impact phenomena. To predict the resultant motions of the vessel in a realistic
manner, the mathematical model developed by Bishop et al. [37] contains many details of the ship
(i.e., shape, mass distribution, etc.). However, in this study with its emphasis on nonlinear
behaviour, to assess the interactions of the many components in the dynamical system (see for
example, Fig. 1) and to understand the underlying mechanisms, a simple mathematical model
[38,39] is assumed in which the ship is idealized as a uniform prismatic flexible beam of length L,
breadth B, thickness h, draught d (ph), mass density per unit length rb and bending stiffness EI.
This uniform beam is symmetric port-starboard about the longitudinal x-axis and travels at
constant speed U in a sinusoidal head wave of amplitude a, wavenumber k and absolute frequency
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Fig. 1. Dynamic model of a nonlinear isolation system installed on a flexible beam subject to wave excitation.
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o: The ship experiences loadings from this wave system which is defined by the profile xðx; tÞ ¼
a sinðkx � oetÞ where the frequency of wave encounter between ship and wave is oe ¼

o� Uo2=g [39].
The governing equations describing the nonlinear interactive system are as follows:

M €dþ f cðd; _dÞ ¼ �M €wðxc; tÞ; (1a)

dðtÞ ¼ zðtÞ � wðxc; tÞ; (1b)

f cðd; _dÞ ¼ C _dj_djp�1 þ Kdjdjq�1; (1c)

EI
q4w
qx4

þ rb

q2w
qt2

¼ f ðx;w;x; tÞ þ f cDðx � xcÞ; (2a)

f ðx;w; x; tÞ ¼ ra

q2x
qt2

�
q2w
qt2

� �
þ b

qx
qt

�
qw

qt

� �
þ kwðx� wÞ; (2b)

xðx; tÞ ¼ a sinðkx � oetÞ; oe ¼ o� Uo2=g; (2c)

q2w
qx2

����
x¼0

¼ 0 ¼
q2w
qx2

����
x¼L

;
q3w
qx3

����
x¼0

¼ 0 ¼
q3w
qx3

����
x¼L

; (3)

where D denotes a delta function, M the mass of the equipment under investigation, z and wðxc; tÞ
are the absolute displacements of the mass and beam at the point xc, respectively. f cðd; _dÞ
represents the restoring force of the nonlinear isolator in which C and K are the damping and
stiffness coefficients, respectively. Eq. (2a) describes both a travelling and stationary beam
vibrating in water, because the encounter frequency is dependent on the forward speed U of the
beam-like ship. If U ¼ 0, then oe ¼ o; which represents the case of a stationary beam. The
exponents p and q in Eq. (1c) characterize, respectively, the nature of the nonlinearity in damping
and stiffness of the isolator. This model can be considered as an idealization of a variable
diaphragm pneumatic suspension system [40]. With q ¼ 3, we obtain a generalized Duffing
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equation model with pth power damping [22]. With q ¼ 1 and p ¼ 1, Eq. (1) reduces to the linear
case.
In Eq. (2b), f ðx;w; x; tÞ denotes the fluid loading per unit length involving inertial, damping and

buoyancy forces, which is assumed to be a function of the relative motion x� w between
sinusoidal wave and the vertical displacement of the beam and can be rewritten as

f ðx;w; x; tÞ ¼ f x � f w; (4)

where f x ¼ f ðxÞ; f w ¼ f ðwÞ; in which f ð Þ ¼ raq
2
ð Þ=qt2 þ bqð Þ=qt þ kwð Þ: The substitution of

wave equation (2c) into (4) yields

f x ¼ aðkw � rao
2
eÞ sinðkx � oetÞ � abo2

e cosðkx � oetÞ; (5)

where kw ¼ rgB denotes buoyancy stiffness and r the density of the sea. The constants ra and b

are referred to as the added mass and fluid damping of the floating beam, respectively [39].
Physically, in the mathematical model accepted in this study, the rudimentary specification of the
fluid actions relates to the relative displacement, relative velocity and relative acceleration between
the wave elevation and the vertical response of the flexible beam-like hull, as indicated in Eq. (2b).
These assumed constants imply averaged parameter values over the frequency range of interest to
provide a first approximation to the problem. In a more realistic hydroelastic mathematical model
[37,39], these parameters depend on the geometrical hull shape, forward speed, heading angle
between ship and waves, frequency of encounter and environmental conditions. Such model
complexities magnify numerical procedures with refinement of solution accuracy without
significantly altering concepts or qualitative findings.
The introduction of these simplifications to the theory does not affect the generality of the

mathematical model described herein because the natural modes of the dry hull are used in the
mode summation method [37,39] adopted to solve the complex interactive dynamic system. The
simplified model may be replaced by more sophisticated mathematical models, the sinusoidal
wave replaced by a profile of an irregular seaway, convolution integrals adopted to describe the
fluid actions, etc., but fundamental modal solutions based on the dry free–free hull treated in
vacuo remain unchanged.
3. Solution procedure and dynamical analysis

3.1. Natural mode functions of the dry free–free beam and its orthogonal relations

Here, the natural vibration of a linear uniform dry free–free beam is examined, which is
governed by the following equations:

EI
q4w
qx4

þ rb

q2w
qt2

¼ 0; (6a)

q2w
qx2

¼ 0;
q3w
qx3

¼ 0; x ¼ 0; (6b)
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q2w
qx2

¼ 0;
q3w
qx3

¼ 0; x ¼ L: (6c)

By solving the characteristic equations of the system, see, for example Refs. [3,4], the natural
frequencies and the corresponding mode functions are obtained as follows:

Natural frequencies:

~o0 ¼ 0 ¼ ~o1; ~o2
n ¼

EI

rb

b4n ðn ¼ 2; 3 . . .Þ; (7a)

Natural modes:

W 0ðxÞ ¼ 1; W 1ðxÞ ¼ 2x=L � 1;

W nðxÞ ¼ cosh bnx þ cos bnx þ anðsinh bnx � sin bnxÞ; ðn ¼ 2; 3; . . .Þ; (7b)

an ¼ �
cosh bnL � cos bnL

sinh bnL þ sin bnL
ðn ¼ 2; 3; . . .Þ; (7c)

where W0(x) and W 1ðxÞ are the heave and pitch rigid body modes of the beam, respectively, with
relevant natural frequencies ~o0 ¼ 0 ¼ ~o1: These natural modes satisfy orthogonal relations [3,4],Z L

0

W iðxÞW jðxÞ dx ¼ mIdij ;

Z L

0

W 00
i ðxÞW

00
j ðxÞ dx ¼ kIdij ði; j ¼ 0; 1; 2; 3; . . . ; I ¼ iÞ; (7d,e)

where ð Þ
00
¼ q2ð Þ=qx2; mI and kI are the corresponding values of the integrations and dij

represents the Kronecker delta. These natural mode functions Wi(x), (i ¼ 0; 1; 2; 3y) form a
series of complete and orthogonal functions defined in the domain ðx 2 ð0;LÞÞ: Obviously, these
functions are continuous and sufficiently differentiable within the defined domain and
independent of any external forces. Therefore, any sufficiently differentiable function w(x), such
as the displacement of the beam caused by any forces, can be represented by the following series:

wðxÞ ¼
X1
n¼0

W iðxÞBi; Bi ¼

Z L

0

W iðxÞwðxÞ dx=mI ; (7f,g)

because there exist the integrations represented by Eq. (7g) to provide the coefficients Bi:

3.2. Mode representation of the beam displacement response

The dynamic displacement w (x, t) of the beam satisfying Eq. (2a) is a single-value, continuous
and differentiable function of x defined in the domain x 2 ð0;LÞ; because the beam is assumed to
have no discontinuity or multi-values of the displacement at any point x 2 ð0;LÞ during its
motion. Therefore, based on the descriptions in Section 3.1, the dynamic displacement w (x, t) of
the beam can be represented using an arbitrary series of complete functions defined in the domain
x 2 ð0;LÞ: Here the series of the mode functions W iðxÞof the dry beam are chosen [39,41] and the
dynamic displacement w (x, t) is represented as

wðx; tÞ ¼
XN

n¼0

W nðxÞqnðtÞ; (8)
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where qnðtÞ(n ¼ 0,1,2y) denotes a time-dependent generalized coordinates, and N denotes the
maximum mode number adopted in the analysis to achieve a prescribed accuracy of solution.
Substituting Eq. (2b) into Eq. (2a) yields

EI
q4w
qx4

þ ðra þ rbÞ
q2w
qt2

þ b
qw

qt
þ kww ¼ ra

q2x
qt2

þ b
qx
qt

þ kwxþ f cDðx � xcÞ: (9a)

Substituting Eq. (8) into Eq. (9a), then pre-multiplying W iðxÞ on both sides and integrating with
respect to x from 0 to L using the orthogonal relations Eqs. (7d,e) and noting the delta function
Dðx � xcÞin the integration, we obtain

€qn þ 2xnon _qn þ o2
nqn ¼ QnðtÞ=Mn þ f cðd; _dÞW nðxcÞ=Mn ðn ¼ 0; 1; 2; . . . ;NÞ: (9b)

Here on ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kn=Mn

p
; xn ¼ Cn=2Mnon; Mn;Cn;Kn and QnðtÞ are generalized mass, damp-

ing, stiffness and force represented, respectively, by the forms

Mn ¼

Z L

0

ðra þ rbÞW
2
nðxÞ dx;

Cn ¼

Z L

0

bW 2
nðxÞ dx;

Kn ¼

Z L

0

½EIW 002
n ðxÞ þ kwW 2

nðxÞ� dx;

QnðtÞ ¼

Z L

0

f xW nðxÞ dx; f x ¼ ra

q2x
qt2

þ b
qx
qt

þ kwx: (9c)

Eq. (9b) is a set of differential equations with N+2 unknown variables qnðtÞ; ðn ¼

0; 1; 2; . . . ;NÞ and d(t) to be determined by solving Eq. (9b) and Eq. (1a).

3.3. Nondimensional form of equations

By choosing the characteristic length of the wave amplitude a, time 1=O0; O0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kaq�1=M

p� 	
;

and mass M, the nonlinear Eqs. (1a) and (9b) can be rewritten in their nondimensional forms,

€Dþ f̄ cðD; _DÞ ¼ � €̄wðx̄c;TÞ; (10a)

€̄qn þ 2xnXn _̄qn þ X2
nq̄n ¼ Q̄ngn þ f̄ cW nðx̄cÞgn ðn ¼ 0; 1; 2; . . .Þ; (10b)

€̄z þ f̄ cðD; _DÞ ¼ 0; (10c)

w̄ ¼
XN

n¼0

W nðx̄Þq̄nðTÞ; (10d)

where Eq. (1c) is expressed as

f̄ cðD; _DÞ ¼ 2Z _Dj _Djp�1 þ DjDjq�1: (11)
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Here Eq. (10c) is introduced to replace Eq. (1b) in order to calculate the absolute displacement z̄

satisfying the dynamical equilibrium equation of the absolute motion of equipment using the
harmonic balance method described in Section 3.4 and therefore, avoids numerical errors.
The corresponding nondimensional quantities in Eq. (10) are given as

D ¼
d
a
; _D ¼

_d
aO0

; €D ¼
€d

aO2
0

;

q̄n ¼
qn

a
; _̄qn ¼

_qn

aO0
; €̄qn ¼

€qn

aO2
0

;

w̄ ¼
w

a
; _̄w ¼

_w

aO0
; €̄w ¼

€w

aO2
0

;

x̄ ¼
x
a
; z̄ ¼

z

a
; k̄ ¼ ka;

b̄ ¼
ab

MO0
; k̄w ¼

akw

MO2
0

; Q̄n ¼
Qn

MaO2
0

;

gn ¼
M

Mn

; g ¼
M

Mb

;

r̄a ¼
ara

M
; r̄b ¼

arb

M
; r̄v ¼ r̄a þ r̄a;

Xn ¼
on

O0
; O ¼

oe

O0
;

T ¼ O0t; oet ¼ OT ;

Z ¼ Cap�1Op�2
0 =2M: (12)

Accordingly, the generalized force is represented in terms of nondimensional parameters in the
form

Q̄n ¼ ½S̄1n � b̄OS̄2n� cos OT � ½S̄2n � b̄OS̄4n� sin OT ; (13a)

where

S̄1n ¼ ðk̄w � r̄aO
2ÞS̄4n; S̄2n ¼

Z L̄

0

W nðx̄Þ cos k̄x̄ dx̄;

S̄3n ¼ ðk̄w � r̄aO
2ÞS̄2n;

S̄4n ¼

Z L̄

0

W nðx̄Þ sin k̄x̄ dx̄ ðn ¼ 0; 1; 2; . . . ;NÞ: (13b)
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3.4. Harmonic balance method

The harmonic balance method [35] is a numerical tool applied in the frequency domain to study
nonlinear dynamical problems. The general idea of this method is to represent each time history
by its frequency content to obtain a set of equations by balancing the terms with the same
frequency components and through an iterative procedure to find the roots of these equations. As
a first approximation in the harmonic balance method, the dimensionless relative displacement D;
the generalized coordinates q̄n; and the nonlinear coupling force f̄ cðD; _DÞ are represented as
Fourier expansions to the first order. Without loss of generality, we can arbitrarily choose D0 ¼ 0
as a reference position in the Fourier expansion of the dimensionless relative displacement D:
Therefore, we have

D ¼ D1 cosðOT þ fÞ; (14)

q̄n ¼ q̄n0 þ q̄n1 cosOT þ q̄n2 sinOT ðn ¼ 0; 1; 2; . . . ;NÞ; (15)

f̄ c ¼ R0 þ R1 cosðOT þ fÞ þ R2 sinðOT þ fÞ

¼ R0 þ R cosðOT þ f� yfcÞ; ð16Þ

where f is a phase angle, D1; q̄n0; q̄n1 and q̄n2 are coefficients of amplitudes to be determined. There
is no necessity to include the phase f in Eq. (16), but, as shown later in deriving Eqs. (54)–(57), it
is a convenient parameter to use to derive the power flow absorption coefficient. R0;R1 and R2 are
the Fourier coefficients defined by

R0 ¼
1

2p

Z p

�p
f̄ cðyÞ dy; (17a)

R1 ¼
1

p

Z p

�p
f̄ cðyÞ cos y dy; (17b)

R2 ¼
1

p

Z p

�p
f̄ cðyÞ sin y dy (17c)

and

RðOÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 þ R2

2

q
; yfc ¼ tan�1

R2

R1
; (17d)

where y ¼ OT þ f: Substituting Eq. (14) into Eqs. (11) and (17), and omitting the
lengthy derivation of the integration, we find that the detailed expressions for R0;R1 and R2

are given by

R0 ¼ 0; R1 ¼ lqD
q
1; R2 ¼ �2ZOplpD

p
1; (18a2c)

where

lq ¼
2ffiffiffi
p

p
Gðq=2þ 1Þ

Gðq=2þ 1:5Þ
; lp ¼

2ffiffiffi
p

p
ðp=2þ 1Þ

Gðp=2þ 1:5Þ
;
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in which G denotes the standard gamma function [42]. The substitution of Eqs. (14) and (16) into
Eq. (10a) gives

�O2D1 cosðOT þ fÞ þ R1 cosðOT þ fÞ þ R2 sinðOT þ fÞ ¼ �
XN

n¼0

W nðx̄cÞ €̄qn;

which when combined with Eqs. (15) and (18a) yield

ðlqD
q
1 � O2D1Þ cosf� 2ZOplpD

p
1 sinf ¼ O2

XN

n¼0

q̄n1W nðx̄cÞ; (19a)

ðlqD
q
1 � O2D1Þ sinfþ 2ZOplpD

p
1 cosf ¼ �O2

XN

n¼0

q̄n2W nðx̄cÞ: (19b)

where coefficients of the same harmonics (i.e., sinOT ; cosOT) and constant terms are equated.
Similarly, from Eqs. (16), (10b) and (18a) it follows that

q̄n0 ¼
gnW nðx̄cÞ

X2
n

R0 ¼ 0; (20a)

Að11Þ
n q̄n1 þ Að12Þ

n q̄n2 � anD
q
1 cosfþ bnD

p
1 sinf ¼ Fn1; (20b)

Að21Þ
n q̄n1 þ Að22Þ

n q̄n2 þ anD
q
1 sinfþ bnD

p
1 cosf ¼ Fn2; (20c)

where

Að11Þ
n ¼ Að22Þ

n ¼ X2
n � O2; Að12Þ

n ¼ �Að21Þ
n ¼ 2xnXnO;

Fn1 ¼ gn½S̄1n � b̄OS̄2n�; Fn2 ¼ �gn½S̄3n � b̄OS̄4n�;

an ¼ gnW nðx̄cÞlq; bn ¼ 2ZOpgnW nðx̄cÞlp:

To solve the coupled nonlinear algebraic equations, we express Eqs. (19) and (20) in the matrix
forms

AnQn þ BnX ¼ Fn ðn ¼ 0; 1; 2; . . . ;NÞ; (21)

XN

n¼0

W nðx̄cÞQn þGX ¼ 0 ðn ¼ 0; 1; 2; . . . ;NÞ; (22)

where

An ¼
Að11Þ

n Að12Þ
n

Að21Þ
n Að22Þ

n

" #
; (23a)

Bn ¼
�anD

q�1
1 bnD

p�1
1

bnD
p�1
1 anD

q�1
1

" #
; (23b)
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G ¼
1� lqD

q�1
1 O�2 2ZOp�2lpD

p�1
1

2ZOp�2lpD
p�1
1 �1þ lqD

q�1
1 O�2

" #
; (23c)

Qn ¼
q̄n1

q̄n2

( )
; Fn ¼

Fn1

Fn2

( )
; (23d,e)

X ¼
X 1

X 2

( )
¼

D1 cosf

D1 sinf

( )
; XTX ¼ D2

1; f ¼ tan�1
X 2

X 1
(23f)

To aid calculation, Eqs. (23b) and (23c) are written as

Bn ¼ anD
q�1
1 I1 þ bnD

p�1
1 I2; (24a)

G ¼ �I1 þ lqD
q�1
1 O�2I1 þ 2ZOp�2lpD

p�1
1 I2; (24b)

where the matrices I1 and I2 are given by

I1 ¼
�1 0

0 1

� �
; I2 ¼

0 1

1 0

� �
: (24c,d)

The set of equations (21) and (22) is of nonlinear form and no exact general solution exists.
However, many numerical methods can be used to solve such nonlinear system problems, e.g. a
Newton–Raphson iteration process [36]. In the present study, this method is again adopted to
solve the resulting nonlinear equations and the developed iterative algorithm (with good
convergence characteristics) is presented in the following section. Obviously, if p ¼ 1 and q ¼ 1,
the matrices Bn and G are independent of D1 and the system equation (22) reduces to a linear
form. The responses of this linear system can be determined by linear algebraic calculations
following traditional procedures [43].
4. Iteration algorithm

To solve the coupled nonlinear Eqs. (21) and (22), we combine these two equations. That is

fðD1;OÞXðD1Þ ¼ FðOÞ; (25)

where

fðD1;OÞ ¼
XN

n¼0

W nðx̄cÞA
�1
n Bn �G; (26a)

FðOÞ ¼
XN

n¼0

W nðx̄cÞA
�1
n Fn (26b)

Eq. (25) is a nonlinear vector equation where the vector fðD1;OÞ depends nonlinearly on the
displacement D1 and requires solving iteratively. The solution X at each excitation frequency O is
determined using the Newton–Raphson iteration method.
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The basic equation to be solved in this nonlinear analysis is described by Eq. (25) and at
frequency Oþ DO; we have

fðD1;Oþ DOÞXðD1ðOþ DOÞÞ ¼ FðOþ DOÞ: (27)

At each iterative step, the coefficients are evaluated at each exciting frequency.
Suppose the exact solutions at frequency O are X* and D

1: They, therefore, satisfy Eq. (25), such
that

fðD
1ÞX

 ¼ F: (28)

We assume that in the iterative solution the evaluated approximate values for Eq. (25) at
frequency Oþ DO are Dði�1Þ

1 ðOþ DOÞ and Xði�1ÞðOþ DOÞ: A Taylor series expansion of the first
order gives the iterative solution Xði�1Þ at the (i�1)th iteration which satisfies the relation

fðD
1ÞX

 ¼ fðDði�1Þ
1 Oþ DOÞXði�1ÞðOþ DOÞ þ

qf
qD1

X

� �����
ði�1Þ

OþDO
½D

1 � Dði�1Þ
1 ðOþ DOÞ�

þfj
ði�1Þ
OþDO½X

 � Xði�1ÞðOþ DOÞ�; ð29Þ

where higher-order terms are neglected. Substituting Eq. (28) into Eq. (29) and rearranging, we
obtain

qf
qD1

X

� �����
ði�1Þ

OþDO
½D

1 � Dði�1Þ
1 ðOþ DOÞ� þ f

���ði�1Þ
OþDO

½X � Xði�1ÞðOþ DOÞ�

¼ F � fðDði�1Þ
1 ;Oþ DOÞXði�1ÞðOþ DOÞ: ð30Þ

The substitution of the incremental corrections ~D1 ¼ D
1 � Dði�1Þ

1 ðOþ DOÞ and DXðiÞ ¼ X �

Xði�1ÞðOþ DOÞ; allows Eq. (30) to be written in the form

qf
qD1

X

� �����
ði�1Þ

OþDO

~D1 þ f
��ði�1Þ
OþDODX

ðiÞ ¼ F � fX
��ði�1Þ
OþDO: (31)

Recognizing that XTX ¼ D2
1; after differentiation we obtain

~D
ðiÞ

1 ¼
1

D1
XT

����
ði�1Þ

OþDO
DXðiÞ: (32)

The substitution of Eq. (32) into Eq. (31) and using Eq. (27) yields

1

D1

qf
qD1

XXT

� �
þ f

� �����
ði�1Þ

OþDO
DXðiÞ ¼ FðOþ DOÞ � fX

��ði�1Þ
OþDO: (33)

The partial differentiation qf=qD1 in this equation can be derived from Eqs. (24) and (26a) and is
given by

qf
qD1

¼
X1
n¼0

W nðx̄cÞA
�1
n

qBn

qD1
�

qG
qD1

; (34)
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qBn

qD1
¼

�anðq � 1ÞDq�2
1 bnðp � 1ÞDp�2

1

bnðp � 1ÞDp�2
1 anðq � 1ÞDq�2

1

2
4

3
5

¼ ðq � 1ÞanD
q�2
1 I1 þ ðp � 1ÞbnD

p�2
1 I2;

ðn ¼ 0; 1; 2; . . . ;NÞ; ð35Þ

qG
qD1

¼
�lqðq � 1ÞDq�2

1 Ō�2
2Zðp � 1ÞŌp�2lpD

p�2
1

2Zðp � 1ÞŌ
p�2

lpD
p�2
1 lqðq � 1ÞDq�2

1 Ō
�2

2
4

3
5

¼ ðq � 1ÞlqD
q�2
1 O�2I1 þ 2ðp � 1ÞZOp�2lpD

p�2
1 I2: ð36Þ

Thus, we obtain the incremental correction DXðiÞ from Eq. (33), which is used to obtain the next
displacement approximation

XðiÞðOþ DOÞ ¼ Xði�1ÞðOþ DOÞ þ DXðiÞ: (37)

In addition, the incremental correction ~D
ðiÞ

1 is obtained from Eq. (32) using the result for DX ðiÞ:
That is, the displacement at iteration i is

DðiÞ
1 ðOþ DOÞ ¼ Dði�1Þ

1 ðOþ DOÞ þ ~D
ðiÞ

1 : (38)

The relationship between Eqs. (33), (37) and (38) constitute the Newton–Raphson iteration
solution of Eq. (28) and the iteration is continued until convergence to a specified response
accuracy is obtained. After evaluating solutions XðiÞ and DðiÞ

1 ; the generalized coordinates q̄n1 and
q̄n2 or Q

ðiÞ
n are given by

QðiÞ
n ¼ A�1

n ½Fn � BnðD
ðiÞ
1 ÞX

ðiÞ� ðn ¼ 0; 1; 2; . . . ; Þ: (39)

The initial conditions are determined by the parameter values

Dð0Þ
1 ¼ 0; q̄

ð0Þ
n1 ¼

gnk̄w

X2
n

S̄4n; q̄
ð0Þ
n2 ¼

gnk̄w

X2
n

S̄2n ðn ¼ 0; 1; 2; . . . ;NÞ (40)

giving X
ð0Þ
1 ¼ 0 ¼ X

ð0Þ
2 :
5. Dynamical responses of the nonlinear system

The substitution of the iterative solution X described in Eq. (23f) into Eq. (39) leads to solutions
of q̄n1 and q̄n2 in Eq. (15). When the solutions q̄nðn ¼ 0; 1; 2; . . . ;NÞ are substituted into Eqs. (10d),
(10c), (16), (17d) and (18), the nondimensional absolute displacements w̄ at position x̄ of the beam
and z̄ at the centre of mass of the equipment are derived in the forms

wðx̄;O;TÞ ¼ Dwðx̄;OÞ cosðOT � ywÞ; (41)

z̄ðT ;OÞ ¼ DzðOÞ cosðOT þ yzÞ; (42)
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where

Dwðx̄;OÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n¼0

W nðx̄Þq̄n1

" #2
þ

XN

n¼0

W nðx̄Þq̄n2

" #2vuut ; (43a)

DwcðOÞ ¼ Dwðx̄c;OÞ; (43b)

DzðOÞ ¼ RðOÞ=O2; (43c)

ywðx̄;OÞ ¼ tan�1
PN

n¼0W nðx̄Þq̄n2PN
n¼0W nðx̄Þq̄n1

; (44a)

ywcðx̄c;OÞ ¼ tan�1
PN

n¼0W nðx̄cÞq̄n2PN
n¼0W nðx̄cÞq̄n1

; (44b)

yzðOÞ ¼ f� yfc: (44c)

Physically, Dz and Dwc provide information describing the vibration transmission from the
exciting wave system to the ship and equipment, because the wave height a is chosen as a
characteristic length in the nondimensional equations.
6. Power flow analysis

Once the nonlinear dynamic displacement variables are solved, the associated vibratory power
flow is calculated from the inner product of the force and the corresponding velocity response [14].

6.1. Input power flow

The instantaneous input power flow density pin at any point x̄ by a wave is defined by the dot
product of the velocity _̄wðx̄;O;TÞ and fluid loading f̄ xðx̄;O;TÞ: That is

pin ¼ f̄ xðx̄;O;TÞ � _̄wðx̄;O;TÞ; x̄ 2 ½0; L̄�; (45)

where

f̄ xðx̄;O;TÞ ¼ ðk̄w � r̄aO
2Þ sinðk̄x̄ � OTÞ � b̄O cosðk̄x̄ � OTÞ (46a)

and

_̄wðx̄;O;TÞ ¼ �ODwðx̄;OÞ sinðOT � ywÞ (46b)

is the velocity response at any point on the beam. The time-averaged power flow spectrum hpini is
defined by

hpini ¼
1

T̄

Z T̄

0

f̄ xðx̄;O;TÞ � _̄wðx̄;O;TÞ dT ; (47)
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where T̄ ¼ 2p=O: The total instantaneous input power spectrum PinðOÞ and its total time-
averaged power flow spectrum hPinðOÞi are respectively calculated by the integral of pin and hpini
along the length of the beam. That is,

PinðOÞ ¼
Z L̄

0

pin dx̄; (48)

hPinðOÞi ¼
Z L̄

0

hpini dx̄: (49)

6.2. Power flow transmission

To characterize vibratory energy transmission from wave to the equipment, the instantaneous
power Pe and the time-averaged power hPei transmitted through the mounting to the equipment
are calculated by

PeðOÞ ¼ f̄ cðD; _DÞ � _̄zðT ;OÞ; (50)

hPeðOÞi ¼
1

T̄

Z T̄

0

Pe dT : (51)

It follows from Eqs. (16), (17d), (18), (42), (43c) and (44c) that

f̄ cðD; _DÞ ¼ RðOÞ cosðOT þ f� yfcÞ ¼ RðOÞ cosðOT þ yzÞ; (52a)

_̄zðT ;OÞ ¼ �ODzðOÞ sinðOT þ yzÞ: (52b)

The integration of Eq. (51) gives the time-averaged power

hPeðOÞi ¼ 0: (52c)

This is the first-order approximation result using the harmonic balance method. It shows that the
nonlinear system is now represented by an equivalent linear system whose parameters are
frequency dependent. For a prescribed nonlinear system and wave frequency oe; the
nondimensional frequency O is constant and therefore the parameters of the equivalent linear
system are determined. As demonstrated for linear systems in Ref. [44], the time-averaged changes
of the kinetic and potential energy vanish and the time-averaged energy input into a subsystem
equals to the time-averaged energy dissipation within this subsystem. Here, the equipment is
treated as a rigid body having no internal material damping and therefore, at frequency O the
time-averaged energy input into the equipment is zero.
The nondimensional instantaneous kinetic energy per unit mass of the equipment is given by

ekðT ;OÞ ¼ 1
2
_̄z
2
ðT ;OÞ ¼ EkðOÞ sin

2
ðOT þ yzÞ; (53a)

where

EkðOÞ ¼
1

2
O2D2

zðOÞ ¼
R2ðOÞ

2O2
(53b)
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denotes the amplitude of the kinetic energy at each nondimensional frequency O ¼ oe=O0: This
quantity is used to estimate the vibration energy spectra of the rigid equipment excited by external
wave excitations.

6.3. Power flow absorption

Power flow absorption quantities are used to investigate power flow control effectiveness. The
aim of power flow control is to absorb vibratory energy or to minimize its transmission to
vibration-sensitive equipment through an isolation system. By using the power flow generation
and transmission equations described previously, the instantaneous and time-averaged power flow
absorbed by the nonlinear isolator can be derived. That is, the instantaneous power flow Pa and
the time-averaged power flow hPai absorbed by the nonlinear isolator are given, respectively, by

Pa ¼ _D � f̄ cðD; _DÞ; (54)

hPaðOÞi ¼
1

T̄

Z T̄

0

Pa dT ; (55)

where, from Eq. (14)

_D ¼ �OD1 sinðOT þ fÞ: (56)

From Eqs. (16), (18), (55) and (56) it follows after integration that

hPaðOÞi ¼ ZlpðD1OÞ
pþ1 (57)

describes the time-averaged power absorption hPai:
7. Numerical results and discussions

Numerical simulations of the interactive nonlinear isolation system as illustrated in Fig. 1 were
undertaken to investigate its dynamical behaviour, power flow characteristics and isolation
efficiency. The system parameters are described as follows: the beamlike ship’s principal
dimensions are L ¼ 1.43� 102m (waterline), B ¼ 21.3m, d ¼ 7.50m with a displacement
Mb ¼ 2.35� 107 kg, EI ¼ 5.43� 1012Nm2; the equipment: M ¼ 9.60� 103 kg; isolator:
K ¼ 1.92� 106Nm�1, C ¼ 2.00� 103Nsm�1, mounting position: xc ¼ L/4. Values of the
nonlinear indices examined in this investigation are:
(1)
 Nonlinear damping only (q ¼ 1):
(i) po1: p ¼ 0:5; (ii) p41: p ¼ 1.5, p ¼ 2 (quadratic damping model), p ¼ 3;
(2)
 Nonlinear stiffness only ( p ¼ 1):
(i) qo1: q ¼ 0.5; (ii) q41: q ¼ 2;
(3)
 Combination of cases (1) and (2).
Sinusoidal waves of wavelength l ¼ 15; 50m, 2L, L, L/2, 0.35L, L/4 with wave amplitude a
¼ 1m were examined to explore the effect of wavelength. To investigate the effects of elastic
supporting structure, the two rigid body heave and pitch modes and the first three elastic modes of
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the beam were assumed to cover the wave frequency bandwidth of interest [39]. The time-averaged
input power and the kinetic energy of the equipment for different nonlinear isolator models were
calculated in the frequency domain. The power flow spectra are expressed in decibel scale (dB
reference: 10�12 w). These results are compared with the linear case p ¼ 1 ¼ q.
7.1. Input power spectra

7.1.1. Effect of elastic supporting structure

Figs. 2 and 3 illustrate the effect of the flexible ship model, compared with a rigid ship model,
on the time-averaged input power flow spectrum /PinS of the linear system excited by a
sinusoidal wave of wavelength l ¼ 50 or 15m. The results reveal that the isolation system
mounted on the elastic ship travelling in sinusoidal waves has a more complex dynamical
behaviour than for the rigid ship case due to the dynamical characteristics of the compliant ship
structure. As shown in these two figures, there are five peaks at the frequency ratios O ¼ 0:08;
0.08, 0.45, 1.22, 2.39 on the curve of time-averaged input power flow spectrum. These peaks
correspond to the two rigid modes at frequency 0.18Hz (repeat frequency) and three elastic modes
at frequencies 1.01, 2.75 and 5.37Hz, respectively. This evidence indicates the importance of
considering the elastic effects of the ship in designing an effective isolation system.
As shown in Fig. 2, the input power flow value produced by the ship’s elastic modes is about

20 dB higher than the rigid ship model under the wave excitation of wavelength 50m. This
difference reduces to 8 dB when the excitation is of wavelength 15m shown in Fig. 3. From this
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comparison, it may be concluded that the simplified rigid model underestimates the input
vibratory energy of the sea. Therefore, for a safe design the elastic dynamic characteristics of the
supporting structure needs to be considered. However, from a vibration control viewpoint, this
evidence suggests that increasing hull stiffness and therefore its elastic natural frequency is
beneficial in reducing vibration transmission from the base to the equipment.

7.1.2. Effect of sea wave length
To examine the effect of wave condition, five different sinusoidal waves of wavelength l ¼ 2L;

L, L/2, 0.35L and L/4 were examined for the linear system accepting the ship as an elastic beam.
Figs. 4 and 5 display, respectively, the variations of the total time-averaged input power spectra of
these sinusoidal wave excitations in the linear and nonlinear coupled systems. The results
presented in Fig. 4 reveal that the wave excitation has significant influence on power flow input to
the overall system. This is because the ship travelling in waves changes its location along the wave,
and, hence, varies the phase magnitude between ship motion and fluid load. Also, changing
wavelength alters the wave force distributions along the ship and, hence, modifies the amplitude of
generalised force, as shown in Eq. (9), for each mode. As observed in Fig. 4, for l ¼ 2L the power
input by the wave is the largest because the wave-induced pressures and inertia forces along the
ship are in phase with the vertical motion of the beam-like ship and the wave distribution
corresponds to the greatest generalized force. When ship-wave matching occurs [39], i.e., l ¼ L;
the energy input into heave, pitch and elastic bending modes is greater than those predicted for
shorter wavelengths ðloLÞ: For example, for wavelength l ¼ L=4 the input power by the wave is
about 30 dB less compared to the case of wavelength l ¼ L; as observed from Fig. 4. Further
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numerical simulations demonstrated that the power flow input by the waves reduces as the
wavelength decreases. For the nonlinear case, Fig. 5 shows the influence of wavelengths on the
input power spectra. This exhibits similar trends over the full frequency range as observed in the
linear case in Fig. 4.

7.1.3. Effect of nonlinear damping

To examine the effect of nonlinear damping alone, four different values of the damping
exponent p ¼ 0.5, 1, 2 and 3 were considered assuming a constant value of stiffness exponent
q ¼ 1. Figs. 6 and 7 illustrate their influence on the time-averaged input power. In these figures,
the solid lines represent the linear system, whereas other lines relate to the nonlinear cases as
indicated in the figures.
Several observations are deduced from the findings displayed in these figures. Namely, (1) the

nonlinearity in the damper alters the input power flow characteristics locally. As shown in Fig.
6(a), there is no obvious global effect of the damping power p on the time-averaged input power
spectra in the chosen frequency range, but a local effect is observed as highlighted in details in Fig.
6(b) and Fig. 7(a,b). (2) This local difference of the peak values of the input power increases as p
increases (see Figs. 6(b) and 7). (3) The peak values of the input power are always larger for p41
than the linear case (p ¼ 1). (4) Similar trends are also observed for other types of wave excitation
of different wavelengths (l ¼ L=2; L/4) as shown in Fig. 7(a,b), and the input power increases as
the nonlinear exponent p increases. This is because an increase of the damping power p increases
the equivalent damping coefficient Z given in Eq. (12). Fig. 8 clearly supports this trend. This
explains why increasing p results in an increased power flow input, because the dissipative capacity
of the system is increased.

7.1.4. Effect of nonlinear stiffness
The nonlinear stiffness influence on the time-averaged input power /PinS is examined

by setting the damping power p ¼ 1 and varying the stiffness power q ¼ 0.5, 1, 2, as shown in
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Fig. 9(a,b). Again, the solid line in these figures represents the linear case (p ¼ 1, q ¼ 1), whereas
the dotted and dashed lines denote the nonlinear cases.
It is seen from Fig. 9(a) that the input power spectra corresponding to the first two and fourth

peaks are almost unaffected by the nonlinearity of the isolator stiffness. However, there is
considerable reduction of the input power at the third peak which corresponds to the resonance
frequency at O ¼ 1:22 of the coupled system. This local effect is highlighted in Fig. 9(b) in the
region of O ¼ 1:22:
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7.2. Kinetic energy spectra of the equipment

7.2.1. Effect of nonlinear damping
The effectiveness of the nonlinear vibration isolation system is now examined through the

kinetic energy spectra Ek associated with the equipment. Fig. 10 compares the kinetic energy
spectra for different damping models (i.e., p ¼ 0.5,1,2) with linear stiffness (q ¼ 1) when the
elastic ship is subject to wave excitation l ¼ L: It is observed from Fig. 10(a) that the damping
power p has no obvious influence on the global kinetic energy spectra Ek: However, it is noted
that the damping effect significantly influences the kinetic energy spectra at the resonance
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frequency of the mounting system (i.e., O ¼ 1) as highlighted in Fig. 10(b). Compared to the linear
results, the kinetic energy spectrum decreases in value for p41 implying power dissipation in the
nonlinear mount is achieved for strong nonlinearity in damping (p41). For po1, an increase in
the value of the kinetic energy spectrum occurs. Further calculations show that a decrease of
power p increases the kinetic energy spectrum and an increase in power p reduces the peak value
of the vibration energy experienced by the equipment. Moreover, this tendency is also observed
for a system with nonlinear damping but linear stiffness (q ¼ 1) under other forms of sinusoidal
wave excitation. This demonstrates that for p41 nonlinear damping is effective in reducing the
power transmission from ship hull to equipment. When nonlinearity is also present in the stiffness
ðqa1Þ of the isolator, it is shown in Figs. 13 and 14 that the kinetic energy spectra are also
dramatically affected globally in the high-frequency region by damping characteristic.
7.2.2. Effect of nonlinear stiffness
The effect of nonlinear stiffness with linear damping (p ¼ 1) on the kinetic energy spectra Ek of

the equipment mounted on a rigid base structure is initially examined. Since the nonlinearity of
stiffness causes discontinuous jumps in the frequency sweep process, increasing and decreasing
frequency sweep processes were performed in the numerical simulation of the Newton–Raphson
iterative method in order to characterize the kinetic energy spectra over the full frequency range
considered. Fig. 11 shows the influence of hardening (q ¼ 2) and softening (q ¼ 0.5) stiffness
nonlinearities on Ek in comparison with the linear case. It is seen that a jump phenomenon occurs
in the curves for both q ¼ 0.5 and 2 in the respective critical frequency ranges. Therefore, an
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ship model (l ¼ L; p ¼ 1).
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unstable solution of the system’s governing equations exists in the frequency range within the
jump bandwidth. It is interesting to note that for q ¼ 0.5 a reduction in the energy spectrum
occurs before the critical frequency Oc and thereafter an increase compared to a linear stiffness
system. In contrast, for q ¼ 2 the energy spectrum exhibits the opposite behaviour. That is, a large
reduction occurs after the corresponding critical frequency Oc; whereas in the low-frequency
region, the nonlinear stiffness only negligibly affects the energy spectra corresponding to the rigid
modes of the beam.
Treating the ship as a flexible beam-like structure, we examine the effect of nonlinearity in the

isolator’s stiffness. Fig. 12 illustrates the kinetic energy spectra Ek for a system with softening
(q ¼ 0.5) and hardening (q ¼ 2) stiffnesses assuming linear damping (p ¼ 1). These results are
compared to the linear model (p ¼ 1 ¼ q) predictions indicated by the solid line in the figure. Fig.
12 reveals a similar dynamical behaviour in the low-frequency region as shown in Fig 11. Breaks
in the solution paths also exist and are similar in form to the ones discussed in Fig. 11. However,
no strong jump phenomena are predicted in each critical frequency range. It is also seen that the
critical frequency ranges covering the discontinuity in Fig. 12 are narrower and less evident than
observed in Fig. 11, which reflect the role played by material damping in the flexible ship model.
Further numerical simulations confirm this finding, implying that an increasing loss factor
associated with the ship structure prohibits the existence of a discontinuity.

7.2.3. Nonlinear stiffness and nonlinear damping influences

We now examine the effect of nonlinearities in both damping and stiffness properties of
the isolator system. The impact of this nonlinear configuration on energy spectra behaviour
-40

0

40

80

120

160

200

240

280

K
in

et
ic

 e
ne

rg
y 

sp
ec

tr
a 

E
k 

(d
B

)

q=2 
Elastic ship
wavelength = L
p = 1 

q=1 

q=0.5 

10-2 10-1 100 101

Frequency ratio Ω

Fig. 12. Effect of nonlinear stiffness (q ¼ 0.5, 2) on the kinetic energy of equipment compared to linear case for elastic

ship model (l ¼ L; p ¼ 1).



ARTICLE IN PRESS

10
-2

10
-1

10
0

10
1

40

60

80

100

120

140

160

180

200

220

240

260

Frequency ratio Ω

K
in

et
ic

 e
ne

rg
y 

sp
ec

tr
a 

E
k 

(d
B

)

Wavelength = L 
q = 0.5 

p = 0.5, 2 

Linear

Fig. 13. Effect of softening nonlinear stiffness (q ¼ 0.5) and nonlinear damping (p ¼ 0.5, 2) on the kinetic energy of

equipment for elastic ship model (l ¼ L).

-100

-50

0

50

100

150

200

250

Linear

p=0.5 

Wavelength = L
q = 2 

p=2 

10
-2

10
-1

10
0

10
1

Frequency ratio Ω

K
in

et
ic

 e
ne

rg
y 

sp
ec

tr
a 

E
k 

(d
B

)

Fig. 14. Effect of hardening nonlinear stiffness (q ¼ 2) and nonlinear damping (p ¼ 0.5, 2) on the kinetic energy of

equipment for elastic ship model (l ¼ L).

Y.P. Xiong et al. / Journal of Sound and Vibration 287 (2005) 245–276270



ARTICLE IN PRESS

Y.P. Xiong et al. / Journal of Sound and Vibration 287 (2005) 245–276 271
of the equipment is assessed by comparing predictions to the linear case (p ¼ 1 ¼ q).
The energy spectra for the system with softening (q ¼ 0.5) and hardening (q ¼ 2) stiffnesses
for different nonlinear damping indices (p ¼ 0.5, 2) are presented in Figs. 13 and 14,
respectively. Results for p ¼ 1, q ¼ 0.5 and 2 were discussed in Section 7.2.2 and these
are compared to the linear model (p ¼ 1 ¼ q) predictions indicated by the solid line in both
figures.
In both nonlinear stiffness cases, Figs. 13 and 14 illustrate a jump phenomenon near the

respective critical frequency regimes indicating multiple solutions and hence difficulties in
representing spectra curve solutions. In addition, the jump occurs at a much lower-frequency
region for the system with strong stiffness (q41) nonlinearity in comparison with results derived
for the softening (qo1) nonlinearity case. A comparison of Fig. 14 with Fig. 13 in the high-
frequency region shows the positive benefit of a hardening stiffness associated with nonlinear
damping on the kinetic energy spectra. That is, after the critical frequency the level of energy
transmission is much lower in a system with a strong stiffness nonlinearity (Fig. 14) than one with
a weak stiffness nonlinearity (Fig. 13). In the low-frequency region (Oo0:08; corresponding to
rigid ship motions), in both cases the effect of nonlinear damping is similar to the linear stiffness
(q ¼ 1) case. Moreover, for q41 the kinetic energy reduction increases as the strength of the
damping nonlinearity increases as shown Fig. 14. This implies that using a nonlinear damper in
conjunction with a strong stiffness characteristic is beneficial for vibration reduction in the system.
For qo1, an increase in the value of damping power p has no beneficial decrease in the
equipment’s kinetic energy.
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7.2.4. Influence of passive damping in linear and nonlinear system

In the linear isolation system, increasing damping coefficient C yields an increased power
transmission when O41:414 as displayed in Fig. 15 for the rigid ship model. This implies that the
heavily damped linear vibration isolator produces poor vibration isolation in the high-frequency
region, which coincides with traditional vibration isolation theory [1–4]. However, in a nonlinear
system, increasing the damping coefficient C may have a positive effect in certain frequency
ranges.
Fig. 16 illustrates the influence of varying the value of the damping coefficient C on the kinetic

energy spectra Ek with nonlinearities in both stiffness and damping (p ¼ 2, q ¼ 2). It is observed
that the discontinuities in the curve Ek caused by nonlinear stiffness (q ¼ 2) as shown in Fig. 16
(indicated by the solid line) and previously in Figs. 11 and 14 (indicated by the dash-dotted line)
are absent when the damping coefficient C is increased by a factor of 40 times the original value.
Results presented in Fig. 16 show that further increasing the value C (i.e., 100C) smoothes the
curve near the critical frequency and a large energy transmission occurs after the critical
frequency.
In general, when nonlinearities exist in damping and stiffness, the damping parameter C

significantly influences the characteristics of the kinetic energy spectra. The jump phenomenon is
noticeable in predictions of Ek for small damping coefficient value C. Increasing C smoothes the
spectra curve and stabilises the nonlinear system. On the other hand, when the nonlinearity is
present in damping only (see Fig. 10), no jump effect is exhibited in the energy spectra even for a
small value of damping coefficient.
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In general, Figs. 13–16 demonstrate that using an isolator characterized by strong nonlinear
damping (p41) and hardening stiffness (q41) as well as a large passive damping coefficient C
produces substantial reductions of the energy transmitted to the equipment.

7.3. Comment

Jump phenomena cause difficulty in defining the exact form of the power flow spectra curves
because of the nonuniqueness of solution in the vicinity of the jump frequency band. This may be
overcome by developing an arc-length method [45] in the frequency domain so as to characterize
power transmission behaviour within the critical frequency band. This requires further
investigation which could lead to the characterization of bifurcation and chaos from an energy
flow viewpoint allowing extension of the synthesis method to encompass a multi-term harmonic
balance method.
8. Conclusions

This study discusses mechanisms underlying understanding of power flow characteristics in a
complex nonlinear system influenced by the dynamics of a compliant support (i.e., ship hull)
excited by a distributive dynamical loading due to sinusoidal waves. The nonlinear system
comprises of components such as equipment (e.g. machinery), isolator, flexible ship and waves
with the isolator characterized by nonlinear properties in both the damping and stiffness. This
nonlinear interactive system excited by waves is examined from a vibratory power flow
perspective.
The nonlinearity of the isolator is described by a pth power model for damping and qth power

for stiffness. A mathematical model describing the dynamics of the nonlinear interactive system is
developed and governing equations are formulated to examine dynamical interaction behaviour
and power flow characteristics. A harmonic balance method in association with a New-
ton–Raphson iteration process and an efficient numerical algorithm are developed to solve the
equations of this nonlinear dynamical system. Numerical simulations of the system are
undertaken and the dynamical behaviour, power flow characteristics and isolation efficiency of
the complex nonlinear equipment–beam–water isolation system investigated. The power flow
input produced by waves to the system and the vibratory energy experienced by the equipment are
examined for different nonlinear configurations and different wave excitations. The influence of
flexible or rigid ship, the effects of nonlinearities in damping or/and in stiffness, and the impact of
different wave excitations on power flow characteristics are studied. The primary findings of this
investigation are as follows.
(1)
 The input power flow spectrum is not globally sensitive to the nonlinearity in damping and
stiffness of the isolator except for local variations at some resonance frequency of the coupled
system.
(2)
 The nonlinearity in stiffness plays an important role in determining the characteristics of
power transmission. At critical frequencies, a jump phenomenon is observed in predicted
power transmission values especially in the vicinity of the first few natural frequencies of the
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system where peak power occurs. Therefore, nonuniqueness and instability in the power
transmission path exist in the frequency range containing the jump phenomenon. The
existence of multiple power flow transmission paths for the same excitation is one of the main
differences observed between nonlinear and linear systems.
(3)
 Power flow characteristics, before and after the critical frequency Oc; have different
behaviours. When OoOc; the kinetic energy transmitted to the equipment reduces as the
value of q reduces but increases as q reduces for O4Oc:
(4)
 The contribution of nonlinear damping is significant at the isolator’s resonance frequency in
reducing the peak kinetic energy value of the equipment as p increases.
(5)
 A nonlinear isolator with hardening stiffness but large damping index value p may prevent
jump occurring or the nonlinear system becoming unstable.
The importance of incorporating the dynamic characteristics of the flexible ship structure rather
than simplifying the structure as a rigid hull is demonstrated through predictions of the power
flow behaviour and through evaluation of isolator effectiveness in the nonlinear interactive
system. The findings provide an insight, not only into the dynamical interactive behaviour of
equipment/machinery—nonlinear isolator—ship—waves coupled system from an energy trans-
mission perspective, but may be generalized to vibration isolation systems designed or mounted in
flexible ships travelling in a seaway. This study provides a theoretical approach to analyse power
flow transmissions in a nonlinear system and to produce practical guidelines for the design of a
vibration isolation system applicable to maritime engineering. Based on this study, the following
design guidelines are drawn:
(1)
 A ship deck/hull built as rigid as possible is beneficial in reducing vibration transmission from
the hull structure to the equipment.
(2)
 The utilization of a softening nonlinear stiffness (q o1) in the low-frequency range OoOc and
a hardening nonlinear stiffness (q 41) in the high-frequency O4Oc produces benefits in
controlling vibration transmission.
(3)
 An increase of the nonlinear damping power p provides substantial reductions in the power
transmission to the equipment at the resonance frequency of the isolator.
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